Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Cell ; 31(1): 72-77, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29063508

RESUMO

Hyaluronic acid is a major component of the extracellular matrix, which is important for skin hydration. As aging brings skin dehydration, we aimed to clarify the mRNA expression of hyaluronic acid-related proteins in human skin fibroblasts from donors of various ages (range 0.7-69 years). Previously, we reported that cyclic phosphatidic acid (cPA), a unique phospholipid mediator, stimulated the expression of HAS2 and increased hyaluronic acid synthesis in human skin fibroblasts (donor age: 3 days). In this study, we measured the mRNA expression of hyaluronic acid-related proteins: hyaluronan synthase (HAS) 1-3, hyaluronidase-1, -2, and hyaluronic acid-binding protein (versican). In addition, we tested whether cPA could increase hyaluronic acid synthesis in skin fibroblasts derived from donors of various ages. The expression of HAS1, 3, hyaluronidase-1, and -2 did not change with aging. However, the mRNA expression of versican decreased with aging. Although it is thought that the amount of hyaluronic acid in the dermis decreases with aging, the mRNA expression of HAS2 was increased. But the amount of hyaluronic acid secreted by fibroblasts did not increase with aging. This suggests that the activity and/or protein expression of HAS2 decrease with aging. Furthermore, we observed that cPA caused the increase of hyaluronic acid synthesis at any age, and this effect was increased with aging. These results suggest that aging made the fibroblasts more sensitive to cPA treatment. Therefore, cPA represents a suitable candidate for the health maintenance and improvement of the skin by increasing the level of hyaluronic acid in the dermis.


Assuntos
Envelhecimento/metabolismo , Derme/metabolismo , Fibroblastos/metabolismo , Compostos Heterocíclicos com 1 Anel/farmacologia , Ácido Hialurônico/biossíntese , Ácidos Fosfatídicos/farmacologia , Adulto , Idoso , Células Cultivadas , Criança , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Ácido Hialurônico/genética , Lactente , Masculino , RNA Mensageiro/metabolismo , Estimulação Química , Adulto Jovem
2.
J Oleo Sci ; 66(8): 843-849, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28381767

RESUMO

The sedative effects of volatile components in the essential oil of Artemisia montana ("Yomogi") were investigated and measured using gas chromatography-mass spectrometry (GC-MS). Major components identified included 1,8-cineol, camphor, borneol, α-piperitone, and caryophyllene oxide. Among them, 1,8-cineol exhibited the highest flavor dilution (FD) value in an aroma extract dilution analysis (AEDA), followed by borneol, o-cymene, ß-thujone, and bornyl acetate. The sedative effects of yomogi oil aroma were evaluated by sensory testing, analysis of salivary α-amylase activity, and measurement of relative fluctuation of oxygenated hemoglobin concentration in the brain using near-infrared spectroscopy (NIRS). All results indicated the stress-reducing effects of the essential oil following nasal exposure, and according to the NIRS analysis, 1,8-cineol is likely responsible for the sedative effects of yomogi oil.


Assuntos
Aromaterapia , Artemia/química , Cicloexanóis/farmacologia , Hipnóticos e Sedativos/farmacologia , Monoterpenos/farmacologia , Óleos Voláteis/química , Fitoterapia , Óleos de Plantas/química , Estresse Psicológico/prevenção & controle , Administração Intranasal , Adulto , Animais , Encéfalo/metabolismo , Cicloexanóis/administração & dosagem , Cicloexanóis/isolamento & purificação , Eucaliptol , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Hemoglobinas/metabolismo , Humanos , Hipnóticos e Sedativos/isolamento & purificação , Masculino , Monoterpenos/administração & dosagem , Monoterpenos/isolamento & purificação , Saliva/enzimologia , Espectroscopia de Luz Próxima ao Infravermelho , Volatilização , Adulto Jovem , alfa-Amilases/metabolismo
3.
Plant Cell ; 27(12): 3397-409, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26672069

RESUMO

Humans are unable to synthesize l-ascorbic acid (AsA), yet it is required as a cofactor in many critical biochemical reactions. The majority of human dietary AsA is obtained from plants. In Arabidopsis thaliana, a GDP-mannose pyrophosphorylase (GMPP), VITAMIN C DEFECTIVE1 (VTC1), catalyzes a rate-limiting step in AsA synthesis: the formation of GDP-Man. In this study, we identified two nucleotide sugar pyrophosphorylase-like proteins, KONJAC1 (KJC1) and KJC2, which stimulate the activity of VTC1. The kjc1kjc2 double mutant exhibited severe dwarfism, indicating that KJC proteins are important for growth and development. The kjc1 mutation reduced GMPP activity to 10% of wild-type levels, leading to a 60% reduction in AsA levels. On the contrary, overexpression of KJC1 significantly increased GMPP activity. The kjc1 and kjc1kjc2 mutants also exhibited significantly reduced levels of glucomannan, which is also synthesized from GDP-Man. Recombinant KJC1 and KJC2 enhanced the GMPP activity of recombinant VTC1 in vitro, while KJCs did not show GMPP activity. Yeast two-hybrid assays suggested that the stimulation of GMPP activity occurs via interaction of KJCs with VTC1. These results suggest that KJCs are key factors for the generation of GDP-Man and affect AsA level and glucomannan accumulation through the stimulation of VTC1 GMPP activity.


Assuntos
Arabidopsis/genética , Ácido Ascórbico/metabolismo , Guanosina Difosfato Manose/metabolismo , Mananas/metabolismo , Nucleotidiltransferases/metabolismo , Vitaminas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Nucleotidiltransferases/genética , Filogenia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plântula/genética , Plântula/metabolismo
4.
J Biol Chem ; 283(13): 8125-35, 2008 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-18199744

RESUMO

Monomeric sugars generated during the metabolism of polysaccharides, glycoproteins, and glycolipids are imported to the cytoplasm and converted to respective nucleotide sugars via monosaccharide 1-phosphates, to be reutilized as activated sugars. Because L-fucose (L-Fuc) is activated mainly in the form of GDP derivatives in seed plants, the salvage reactions for L-Fuc are expected to be independent from those for Glc, Gal, L-arabinose, and glucuronic acid, which are activated as UDP-sugars. For this study we have identified, in the genomic data base of Arabidopsis, the gene (designated AtFKGP) of a bifunctional enzyme with similarity to both L-fucokinase and GDP-L-Fuc pyrophosphorylase. Recombinant AtFKGP (rAt-FKGP) expressed in Escherichia coli showed both L-fucokinase and GDP-L-Fuc pyrophosphorylase activities, generating GDP-L-Fuc from L-Fuc, ATP, and GTP as the starting substrates. Point mutations in rAtFKGPs at either Gly(133) or Gly(830) caused loss of GDP-L-Fuc pyrophosphorylase and l-fucokinase activity, respectively. The apparent K(m) values of L-fucokinase activity of rAtFKGP for L-Fuc and ATP were 1.0 and 0.45 mm, respectively, and those of GDP-L-Fuc pyrophosphorylase activity for L-Fuc 1-phosphate and GTP were 0.052 and 0.17 mm, respectively. The expression of AtFKGP was detected in most cell types of Arabidopsis, indicating that salvage reactions for free L-Fuc catalyzed by AtFKGP occur ubiquitously in Arabidopsis. Loss-of-function mutants with tDNA insertion in AtFKGP exhibited higher accumulation of free L-Fuc in the soluble fraction than the wild-type plant. These results indicate that AtFKGP is a bifunctional enzyme with L-fucokinase and GDP-L-Fuc pyrophosphorylase activities, which salvages free L-Fuc in Arabidopsis.


Assuntos
Arabidopsis/enzimologia , Fucose/metabolismo , Nucleotidiltransferases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Sequência de Aminoácidos , Animais , Arabidopsis/genética , Sequência Conservada , Ativação Enzimática , Genoma de Planta/genética , Humanos , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Mutação/genética , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Nucleotidiltransferases/isolamento & purificação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Filogenia , Mutação Puntual/genética , Alinhamento de Sequência , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...